
Report of an space efficient algorithmn
for solving the LCSk problem

陈雨瑶,李欣然,陈伊葶

Abstract

Abstract : The LCS problem is the problem of finding the largest sequence common to
all sequences in a set (usually only two sequences). It has many applications such as pattern
matching, file comparison and so on. The article we reseached proposed two space efficient
algorithms for LCSk and LCS≥k problems based on algorithms of Benson et al[1], of O(kn)

space complexity, if the size of given sequences are both n. We only present the first algorithm
(for LCSk) in this report, since the two algorithms are very similar.

Keywords: LCSk; dynamic programming; divide and conquer

1. Introduction

The longest common subsequence(LCS) problem is a classical problem in computer sci-
ence. The longest common subsequence problem is a classical computer science problem,
which is the basis of data comparison programs such as the diff utility, and has applications
in computational linguistics and bioinformatics. It is also widely used by version-control sys-
tems such as Git to coordinate multiple changes to a collection of version-controlled files.Given
two sequence A and B, our goal is to find the longest common subsequence in A and B among
all the common subsequences. In our researched paper, the authors proposed two space effi-
cient algorithms to solve the LCSk and LCS≥k, which are two varients of the original LCS
problem. The two algorithms are based on algorithms of Benson et al.[1].

The LCSk problem is defined as follows.

Definition 1 Given two sequences A = a1a2 · · · an and B = b1b2 · · · bm, and an integer k, the
LCSk problem is to find the maximal length l such that there are l substrings, ai1 · · ·
ai1+k−1, · · · , ail · · · ail+k−1, identical to bj1 · · · bj1+k−1, · · · , bjl · · · bjl+k−1 where {ait} and {bjt}
are in increasing order for 1 ≤ t ≤ l and any two k-length substrings in the same sequence,
do not overlap.

The LCS ≥ k problem is defined as follows.

Definition 2 Given two sequences A = a1a2 · · · an and B = b1b2 · · · bm, and an integer k, the
LCS ≥ k problem is to find substrings with maximal total length such that aip · · · aip+k+t is
identical to bjp · · · bjp+k+t for −1 ≤ t ≤ k − 2 where {ait} and {bjt} are in increasing order
for 1 ≤ t ≤ l and any two substrings in the same sequence, do not overlap.

2 THE ALGORITHM FOR LCSK PROBLEM 2

In the paper, the authors focus on the space efficient algothms to solve the LCSk and
LCS ≥ k problem. The first algorithm is for LCSk problem, which is a dynamic programming
algorithm using O(mn) time and O(kn) space. The second algorithm is for LCS ≥ k problem,
using O(mn) time and O(kn) space. Since the latter is similar to the former, we only discussed
the first algorithm in our report.

2. The algorithm for LCSk problem

2.1. Description

Define d(i, j) as the length of the longest match between the prefixes of A[1 : i] =
a1a2 · · · ai and B[i : j] = b1b2 · · · bj . The update equation of d(i, j) is Eq. 1.

d(i, j) =

1 + d(i− 1, j − 1), if ai = bj

0, otherwise
(1)

Define f(i, j) as the number of k matchings in the longest common subsequence, consist-
ing of k matching in the prefixes A[i : i] and B[i : j]. The update equation of f(i, j) is Eq.
2.

f(i, j) = max


f(i− 1, j)

f(i, j − 1)

f(i− k, j − k) + δ(d(i, j))

(2)

Where, δ(d(i, j)) is defined by:

δ(i) =

1, if i ≥ k

0, otherwise
(3)

So we have a standarded dynamic programming algorithm using O(mn) time and O(mn)
space:

Algorithm 1: LCSk

Input: input parameters A, B
Output: f(i, j)

1 for i = 1 to n do
2 for j = 1 to m do
3 if ai = bj then d(i, j)← 1 + d(i− 1, j − 1);
4 f(i, j)← max{f(i− 1, j), f(i, j − 1), f(i− 1, j − 1) + δ(d(i, j))} ;
5 end
6 end
7 return f(n,m)

The authors noticed that when computing a particular row of the denamic programming
table, we only need the nearest previous k rows. Thus we only need to maintain k + 1 rows
in the memory at a time. We assume m = O(n) so only (k+1)m = O(kn) entries are needed
to compute the table.

But if we need to construct the longest common subsequence itself, not only the length,
the above algorithm is not enough. By extending the definition of LCSk problem, the authors
give a method using divide-and-conquer.The generalized definition of LCSk as follows:

2.1 Description 3

Definition 3 For the two substrings A[i0 : i1] = ai0ai0+1 · · · ai1 and B[j0 : j1] = bj0bj0+1 · · · bj1
, 1 ≤ i0 ≤ i1 ≤ n, 1 ≤ j0 ≤ j1 ≤ m, the set of all LCSk of A[i0 : i1] and B[j0 : j1] is denoted by
LCSk(i0, i1, j0, j1). The length of an LCSk in LCSk(i0, i1, j0, j1) is denoted by p(i0, i1, j0, j1).

Similarly, the set of all LCSks of the two reversed substrings A[i0 : i1] = ai1ai1−1 · · · ai0
and B[j0 : j1] = bj1bj1−1 · · · bj0 is denoted by LCSkR(i0, i1, j0, j1). The length of an LCSk in
LCSkR(i0, i1, j0, j1) is denoted by g(i0, i1, j0, j1).

When i0 = 1 and j0 = 1, f(1, i, 1, j) = f(i, j) for 1 ≤ i ≤ n, 1 ≤ j ≤ m. Similarly, when
i1 = n and j1 = m, g(i, n, j,m) = g(1, 1) for 1 ≤ i ≤ n, 1 ≤ j ≤ m. And obviously, when
i0 = 1, j0 = 1, i1 = n and j1 = m, f(n,m) = g(1, 1).

The following algorithm ξ(i0, i1, j0, j1) returns an array L1[0 : k][1 : m] storing the (k +
1)m entries required to compute the table. Row i is mapped to rowλ(i)(1 ≤ λ(i) ≤ k) of L1,
and λ(i) is defined as:

λ(i) = (i− 1) mod k + 1 (4)

Algorithm 2: ξ(i0, i1, j0, j1)
Input: A[i0 : i1], B[j0 : j1]
Output: L1

1 for i = i0 to i1 do
2 for j = j0 to j1 do
3 L1(λ(i− 1), j)← L1(0, j))) ;
4 if ai = bj then d(λ(i), j)← 1 + d(λ(i− 1), j − 1) ;
5 L1(0, j)← max{L1(λ(i− 1), j), L1(0, j − 1), L1(λ(i− k), j − k) + δ(d(λ(i), j))}
6 end
7 end
8 for j = j0 to j1 do L1(λ(i1), j)← L1(0, j) ;
9 return L1(λ(i1), j1)

Similarly, η(i0, i1, j0, j1) maintains a L2 array for LCSkR problem:

Algorithm 3: η(i0, i1, j0, j1)
Input: A[i0 : i1], B[j0 : j1]
Output: L2

1 for i = i1 to i0 do
2 for j = j1 to j0 do
3 L2(λ(i+ 1), j)← L2(0, j))) ;
4 if ai = bj then
5 d(λ(i), j)← 1 + d(λ(i+ 1), j + 1) ;
6 end
7 L2(0, j)←

max{L2(λ(i+ 1), j), L2(0, j + 1), L2(λ(i+ k), j + k) + δ(d(λ(i), j))} ;
8 end
9 end

10 for j = j0 to j1 do
11 L2(λ(i0), j)← L2(0, j) ;
12 end
13 return L2(λ(i0), j0)

2.2 Correctness of the algorithm 4

And a split(k1, k2, l1, l2, s1, s2, i1, j0, j1) function to find the breaking point k1, k2 and
common subsequence beginning point s1, s2:

Algorithm 4: split(k1, k2, l1, l2, s1, s2, i1, j0, j1)
Input: input parameters i1, j0, j1
Output: k1, k2, l1, l2, s1, s2

1 s1, s2, tmp← 0 ;
2 for i = i1 − k + 1 to i1 do
3 for j = j0 − 1 to j1 do
4 t← L1(λ(i), j) + L2(λ(i+ 1), j + 1) ;
5 if t > tmp then tmp← t, k1 ← i, k2 ← j ;
6 end
7 end
8 l1 ← L1(λ(k1, k2)) ;
9 l2 ← L2(λ(k1 + 1, k2 + 1)) ;

10 if l1 = 1 then s1 ← min
j0≤j≤j1

{j | L1(λ(k1), j) = 1} − k + 1 ;

11 if l2 = 1 then s2 ← min
j0≤j≤j1

{j | L2(λ(k1 + 1), j) = 1} ;

12 return k1, k2, l1, l2, s1, s2

So the divide-and-conquer algorithm to solve the LCSk problem with constructing the
subsequences is:

Algorithm 5: D&C(i0, i1, j0, j1)

if i1 − i0 + 1 < 2k then return;
l← ⌊(i1 − i0 + 1 + k)/2 ;
L1 = ξ(i0, i0 + l − 1, j0, j1) ;
L2 = η(i0 + l − k + 1, i1, j0, j1) ;
split(k1, k2, l1, l2, s1, s2, s0 + l − 1, j0, j1) ;
if l1 > 1 then D&C(i0, k1, j0, k2) ;
else if l1 = 1 then record s1 ;
if l2 > 1 then D&C(k1 + 1, i1, k2 + 1, j1) ;
else if l2 = 1 then record s2 ;

2.2. Correctness of the algorithm

Proof for applying D&C(1, n, 1,m) to sequences A and B, with size of n and m respec-
tively, will produce an LCSk of them:

When n < 2k and any m > 0, l is always smaller or equal to 1.

If l1 = 1 and l2 = 1, suppose we have two k−strings B[s1 : s1+k−1] and B[s2 : s2+k−1],
where 

s1 = min
1≤j≤k2

{j | f(1, k1, 1, j) = 1} − k + 1

s2 = min
k2+1≤j≤m

{j | g(k1 + 1, n, j,m) = 1}
(5)

Because l1 = 1 and l2 = 1,it can be verified directly that B[s1 : s1 + k − 1] and B[s2 :
s2 + k − 1] are in LCSk(1, k1, 1, k2) and LCSk(k1 + 1, n, k2 + 1,m).

2.3 Time and space analysis of the algorithm 5

If l1 = 0 and l2 = 0, LCSk(1, k1, 1, k2) = LCSk(k1+1, n, k2+1,m) = ∅, so the algorithm
do nothing.

So the claim is true when n < 2k.

Then prove by induction. Suppose the claim is true when the size of A is smaller than n.
Then show the claim is also true when the size of A is n: L1 stores LCSk(1, ⌊(n+k)/2⌋, 1,m),
computed by ξ(1, ⌊(n+k)/2⌋, 1,m) and L2 stores LCSkR(⌊(n+k)/2⌋+1, n, 1,m), computed
by η(⌊(n+ k)/2⌋+ 1, n, 1,m).

The split points k1 and k2 are:
l1 = f(1, k1, 1, k2)

l2 = g(k1 + 1, n, k2 + 1,m)

max
⌊(n+k)/2⌋−k+1≤i≤⌊(n+k)/2⌋

0≤j≤m

{f(i, j) + g(i+ 1, j + 1)} = l1 + l2

(6)

When l1 > 1 and l2 > 1, Z = Z1 ⊕ Z2 is the common subsequence of A and B, where
Z1 ∈ LCSk(1, k1, 1, k2) and Z2 ∈ LCSk(k1 + 1, n, k2 + 1,m).

So we can conclude D&C(1, n, 1,m) can produce an LCSk of A and B.

2.3. Time and space analysis of the algorithm

Time complexity is O(mn). Denote T (n,m) as the time cost of the algorithm with respect
to input size n and m. The recursive equation as follows:

T (n,m) =

T (k1, k2) + T (n− k1,m− k2) +O(mn), if n ≥ k

O(1), if n < k
(7)

The claim is obviously true for n < 2k.

When n ≥ 2k, n/4 ≤ k1 ≤ 3n/4. Assume T (n,m) is bounded by c1 ·mn, and the O(mn)
term in 7 is bounded by c2 ·mn. Then:

T (k1, k2) + T (n− k1,m− k2) +O(mn)

≤c1 · (k1k2 + (n− k1)(m− k2)) + c2 ·mn

=c1 · 3mn/4 + c2 ·mn

=(3c1/4 + c2) ·mn

Obviously 3c1/4 + c2 ≤ c1 is satifiable, so the assumption is true. So T (n,m) = O(mn).

Assume A and B are in common storage using O(m + n) space. Then the temporary
space D&C use is only L1 and L2. Obviously | L1 |≤ (k + 1)m, | L2 |≤ (k + 1)m. Exclude
the recursive calls to D&C, there are at most 2n − 1 calls to D&C. So the space cost if
propotional to (k + 1)m, i.e. O(kn).

3. Program running environment and results

Our running environment is Windows11, but we believe it can also work well on OSX or
Linux with a little modificaton. The STD Answer is the result from the standard DP, which
we used to justify the divide and conquer algorithm. We tested some simple sequences, and
it seems correct.

4 CONCLUSION 6

(a) k=2 (b) k=3 (c) k=4

Figure 1. Running results for n>2k

4. Conclusion

We find it is similar to the sequence alignment algorithm learned in class, or it can
be seen as a specific application of the algorithm. But their state transition equations of
dynamic programming are different and the essence of this algorithm is the split(·) function.
We modified the ξ(·) and η(·) funtion making L1 and L2 being global variable so that they
do not need to be created and destroyed repeatedly. Our tests were carried out only for
small k and small A,B. It is not clear that the large k, for example k = O(n), also has such
performance.

5. Labor division

李欣然：Code

陈雨瑶，陈伊葶：Report

References

[1] G. Benson, A. Levy, D.Noifeld, B.R. Shalom, “LCSk: a refined similarity measure,”
Theoret. Comput. Sci, vol. 638, pp. 11–26, 2016. [Online].

	Introduction
	The algorithm for LCSk problem
	Description
	Correctness of the algorithm
	Time and space analysis of the algorithm

	Program running environment and results
	Conclusion
	Labor division

